An Evolutionary Stochastic-Local-Search Framework for One-Dimensional Cutting-Stock Problems

نویسندگان

  • Georgios C. Chasparis
  • Michael Rossbory
  • Verena Haunschmid
چکیده

We introduce an evolutionary stochastic-local-search (SLS) algorithm for addressing a generalized version of the so-called 1/V/D/R cutting-stock problem. Cutting-stock problems are encountered often in industrial environments and the ability to address them efficiently usually results in large economic benefits. Traditionally linear-programmingbased techniques have been utilized to address such problems, however their flexibility might be limited when nonlinear constraints and objective functions are introduced. To this end, this paper proposes an evolutionary SLS algorithm for addressing one-dimensional cutting-stock problems. The contribution lies in the introduction of a flexible structural framework of the optimization that may accommodate a large family of diversification strategies including a novel parallel pattern appropriate for SLS algorithms (not necessarily restricted to cutting-stock problems). We finally demonstrate through experiments in a real-world manufacturing problem the benefit in cost reduction of the considered diversification strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving an one-dimensional cutting stock problem by simulated annealing and tabu search

A cutting stock problem is one of the main and classical problems in operations research that is modeled as Lp < /div> problem. Because of its NP-hard nature, finding an optimal solution in reasonable time is extremely difficult and at least non-economical. In this paper, two meta-heuristic algorithms, namely simulated annealing (SA) and tabu search (TS), are proposed and deve...

متن کامل

An ACO algorithm for one-dimensional cutting stock problem

The one-dimensional cutting stock problem, has so many applications in lots of industrial processes and during the past few years has attracted so many researchers’ attention all over the world. In this paper a meta-heuristic method based on ACO is presented to solve this problem. In this algorithm, based on designed probabilistic laws, artificial ants do select various cuts and then select the...

متن کامل

Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem

An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...

متن کامل

An Algorithm for Two Dimensional Cutting Stock Problems with Demand

In this paper, two-dimensional cutting stock problem with demand has been studied.In this problem, cutting of large rectangular sheets into specific small pieces should be carried out hence, the waste will be minimized. Solving this problem is important to decrease waste materials in any industry that requires cutting of sheets. In most previus studies, the demand of pieces has not been usually...

متن کامل

An Algorithm for Two Dimensional Cutting Stock Problems with Demand

In this paper, two-dimensional cutting stock problem with demand has been studied.In this problem, cutting of large rectangular sheets into specific small pieces should be carried out hence, the waste will be minimized. Solving this problem is important to decrease waste materials in any industry that requires cutting of sheets. In most previus studies, the demand of pieces has not been usually...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.08776  شماره 

صفحات  -

تاریخ انتشار 2017